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Abstract

We construct a fast method, OðN logNÞ, for the computation of discrete Gauss transforms with complex parameters,

capable of dealing with unequally spaced grid points. The method is based on Fourier techniques, and in particular it

makes use of a modified unequally spaced fast Fourier transform algorithm, in combination with previously suggested

divide and conquer strategies for ordinary fast Gauss transform methods.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The fast Gauss transform was introduced by Greengard and Strain in [1]. The discrete Gauss transform

computes the contribution of a set of sources, each having an interaction profile in the form of a Gaussian,

on a set of target points. The direct evaluation of the discrete Gauss transform is, generically, OðN 2Þ if the
number of sources and targets is N. We note that in the case where the sources and targets coincide on an

equally spaced grid, the discrete Gauss transform can be evaluated fast by means of the fast Fourier trans-

form (FFT).
In [1] a combination of a divide and conquer strategy and the Hermite expansions is used to construct a

fast algorithm for evaluating the discrete Gauss transform. Similar techniques was later used by Strain in [2]
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to treat the generalized case of Gauss transforms with variable scales, an extension where the widths of the

interaction Gaussians are either source or target dependent.

Fast algorithms for the discrete Gauss transform can be constructed in several ways. In [3] Greengard

and Sun presented a new version based on Fourier techniques instead of the Hermite expansions. The di-

vide and conquer strategy again plays the key role.
Another way of constructing fast Gauss transforms is by means of wavelet expansions using non-stand-

ard forms, cf. [4]. The complexity problems in the straightforward evaluation of the discrete Gauss trans-

form arise when the interaction widths of the Gaussians are medium or large. In a wavelet representation

issues of scales are dealt automatically due to built-in multi-resolution properties of the basis. Hence, since

Gaussians are smooth non-oscillatory functions, the non-standard representation of the discrete Gauss

transform is sparse.

In this paper, we construct fast Gauss transforms with complex parameters,where the interaction profiles

are not pure Gaussians, but Gaussians with additional oscillation, e�(a� ib)x2

. Our goal is fast evaluation of
sums
GðxÞ ¼
XN
j¼1

qje
�ajx�sjj2 ; ð1Þ
with complex parameters a = a � ib, a > 0, b 2 R, given coefficients qj , source locations sj 2 ½� 1
2
; 1
2
� and tar-

get points xi 2 ½� 1
2
; 1
2
�; i ¼ 1; . . . ;M .

The motivation for doing this is partly for making existing tools more general, but mostly because there

is an interest in fast evaluation of integrals of the form
QðxÞ ¼
Z

qðsÞe�ajx�sj2 ds: ð2Þ
Such integrals appear, for example, in the treatment of equations of mathematical physics by using the

separated representation developed in [5].
In engineering literature the Gaussian functions with complex parameters are often referred to as chirped

Gaussians. They appear in several applications, e.g., optics [6], communication theory [7] and atomic and

molecular physics [8], motivating further the need for evaluating convolutions of the form (2). The fast

Gauss transform with complex parameters is a tool for the fast evaluation of these integrals.

The algorithm that we construct uses a combination of the divide and conquer strategy and a modified,

Gaussian based, unequally spaced FFT (USFFT) algorithm. A description of Gaussian based USFFT

algorithms is given in Appendix A.
2. Invoking the USFFT machinery

The apparent difficulty in the fast evaluation of sums of Gaussians with complex parameters is the rap-

idly increasing oscillation of terms; the frequency of the oscillation increases quadratically with the distance

from the center.

The problem, however, is avoided by splitting the real and imaginary part of the phase. As the first step

towards fast evaluation of (1), we rewrite it as
GðxÞ ¼ eibx
2
X
j

qje
ibs2j e�ajx�sjj2e�i2bxsj ¼ eibx

2
X
j

pje
�ajx�sjj2e�i2bxsj ; ð3Þ
where pj ¼ qje
ibs2j . This relieves us from the problem of dealing with the quadratically increasing oscillations

within the sum.
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Next we proceed by using the approach for constructing the USFFT details of which are outlined in

Appendix A. We introduce (similar to (A.7) and (A.8) in Appendix A.1)
f ðsÞ ¼
X
j

pjdðs� sjÞ; ð4Þ
with the Fourier transform
f̂ ðrÞ ¼
X
j

pje
�2pirsj : ð5Þ
Using the Fourier integral,
e�at2 ¼
ffiffiffi
p
a

r Z 1

�1
e�

x2
4a eixt dx; ð6Þ
we rewrite Eq. (3) as
GðxÞ ¼ eibx
2

ffiffiffi
p
a

r X
j

pj

Z 1

�1
e�

p2x2
a e2pixðx�sjÞe�i2bxsj dx: ð7Þ
Changing the order of summation and integration and splitting e2pixðx�sjÞ, we have
GðxÞ ¼ eibx
2

ffiffiffi
p
a

r Z 1

�1
e�

p2x2
a þ2pixx

X
j

pje
�ið2bxþ2pxÞsj dx ¼ eibx

2

ffiffiffi
p
a

r Z 1

�1
e�

p2x2
a þ2pixxf̂

bx
p
þ x

� �
dx: ð8Þ
The decay of the Gaussian factor e�
p2x2
a allows us to replace the integral over the real line in (8) by that

over a finite interval. For accuracy �, it is sufficient to evaluate the integral (8) over the interval (approxi-

mately) jxj <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a lnð�Þ

p
=p. Since jxj 6 1

2
, we need to construct an accurate approximation of f̂ ðnÞ in the

interval
jnj < b
2p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a lnð�Þ

p
p

: ð9Þ
We make use of the approach discussed in some detail in Appendix A. Let us denote the Gaussian bell

parameterized by k > 0 as ckðxÞ ¼ e�kx2 , its Fourier transform as ĉðnÞ, and define (see also (A.4))
akðnÞ ¼
X
l2Z

j ĉkðnþ lÞj2: ð10Þ
Using construction in Algorithm 3, we approximate for j n j6 N
2

f̂ ðnÞ � 1ffiffiffiffiffiffiffiffiffiffiffiffi
akð n

mNÞ
q X

n

ĝnckðmn� nÞ; ð11Þ
where gn are defined in (A.26) and parameters N and m are described in Appendix A. By choosing N such

that the right-hand side of (9) is less than N/2, we substitute (11) into (8) and obtain the approximation
GðxÞ � ~GðxÞ ¼ eibx
2

ffiffiffi
p
a

r Z 1

�1
e�

p2x2
a þ2pixx

X
n

ĝn
ckðmðbxp þ xÞ � nÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

akðbx=pþx
mN

q
Þ

: ð12Þ
Changing the order between the summation and integration in (12) yields
~GðxÞ ¼ eibx
2

ffiffiffi
p
a

r X
n

ĝn

Z 1

�1
e�

p2x2
a þ2pixx ckðmð bx

p þ xÞ � nÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
akðbx=pþx

mN Þ
q dx: ð13Þ
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By using Remark 1 (see Appendix A), we approximate
ffiffiffiffiffiffiffiffiffiffiffi
akðnÞ

p
for jnj < 1

4
by a Gaussian. As a result, the

integral in (13) is evaluated analytically; this makes our choice of Gaussians as interpolating functions a

natural one. Namely, we have
ffiffiffi
p
a

r Z 1

�1
exp

�p2x2

a
þ 2pixx� k m2

bx
p
þ x

� �
� n

� �2

þ bxþ pxð Þ2

ðmNÞ2k

 !
dx

¼ mN
ffiffiffi
k

p
pffiffiffi

j
p � exp

�k2m2N 2ðnp� mbxÞ2 þ kn2p2a� x2p2ðakm2N 2 � b2Þ
j

 !

� exp 2i
abx2ðp2 � k2m4N 2Þ þ npaxk2m3N 2

j

� �
;

where
j ¼ ðp2km2N 2 � p2aþ k2m4aN 2Þ: ð14Þ

Thus, we obtain
~GðxÞ ¼ mN
ffiffiffi
k

p
pffiffiffi

j
p exp

�p2ðakm2N 2 � b2Þ þ 2iabðp2 � k2m4N 2Þ
j

� ib
� �

x2
� �

�
X
n

~̂gn exp � k2m2N 2ðnp� mbxÞ2

j

 !
exp

2inpaxk2m3N 2

j

� �
; ð15Þ
where
~̂gn ¼ ~gn exp � kap2n2

j

� �
: ð16Þ
The structure of expressions in (3) and (15) is quite similar. Both contain a factor that depends on the

target position x, and a sum of coefficients multiplied by a Gaussian and an oscillatory factor. The width of

the Gaussian in (3) is proportional to 1ffiffi
a

p , and in (15), to
ffiffi
j

p

kpmN. The dependence of the width of the Gaussian
in (15) on

ffiffiffi
a

p
becomes more transparent by using
ffiffiffi

j
p

kpmN
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k
þ a

m2

p2
� 1

k2m2N 2

� �
:

s
ð17Þ
Given typical choices of parameters, e.g., m = 2, and k = 0.14 for double precision accuracy, and a suffi-
ciently large N, we have
ffiffiffi

j
p

kpmN
� m

p

ffiffiffi
a

p
: ð18Þ
It follows from (17) and (18) that the width of the Gaussian in (15) is (effectively) directly proportional
ffiffiffi
a

p
,

whereas in (3) it is inversely proportional. Thus, for a given accuracy, the number of terms in these sums for

large values of a is low in (3) and high in (15) and vice versa.
3. Scaling and subdivision

From previous considerations it is clear that if a is either large or small the evaluation of (1) is straight-
forward. We note that using expressions in the frequency domain for large and medium values of a requires
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relatively many terms in (15). We avoid this problem by dividing the source and target points into boxes

proportional to the size of the interaction region, 1ffiffi
a

p . When scaling such a box to the unit size ½� 1
2
; 1
2
�,

the corresponding value of
ffiffiffi
a

p
is reduced by the same scaling factor. Hence, only values of a up to a certain

number (depending on the desired precision) are needed to be treated.

More specifically, for a given accuracy �, the points x affected by a source at sj, are the ones for which
e�aðx�sjÞ2
6 �;
or
j x� sj j6
ffiffiffiffiffiffiffiffiffiffiffiffi
� ln �

a

r
:

Therefore, we divide the source points into K disjoint boxes Ck,
� 1

2
;
1

2

� �
�
[K
k¼1

Ck
of length
2

ffiffiffiffiffiffiffiffiffiffiffiffi
� ln �

a

r
;

and centers ck. For each k, define the corresponding box Dk for the target points with the center ck and of

twice the length of Bk. Let
~sj ¼
sj � cmffiffiffiffiffiffiffiffi

� ln �
a

q ; ~xi ¼
xi � cmffiffiffiffiffiffiffiffi

� ln �
a

q ; ~a ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffi
� ln �

a

r !2

¼ �4 ln �: ð19Þ
so that ~sj 2 ½� 1
2
; 1
2
� and ~xi 2 ½�1; 1� for sj 2 Ck and xi 2 Dk. The contribution from the sources in Ck to tar-

gets in Dk is then computed via (15). Therefore, the complete transform (1) may now be computed by

repeating this procedure for all k.
Since the parameter a~ in (19) is independent of a, the number of needed terms in (15) (see (17)) becomes
m ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ln �

1

k
þ�4 lnð�Þm2

p2

� �s& ’
þ 1;
where Øxø is the smallest integer larger than x. For double precision, k = 0.14 and an oversampling factor

m = 2,
m ¼ 95; ð20Þ

i.e., about three times worse compared with the number of terms needed for the ordinary USFFT.

The complexity of the algorithm is then
O K
N
K

log
N
K

� �
þ m

2M
K

� �� �
¼ O N log

N
K

� �
þ 2mM

� �
:
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3.1. A note on variable scales

In [2] Strain generalized the fast Gauss transform for variable scales. Specifically, sums of the form
Table

Timing

N

64

128

256

512

1024

2048

4096

8192

16384

32768

The tim
SðxiÞ ¼
XN
j¼1

qje
�ajjxi�sjj2 ð21Þ
and
T ðxiÞ ¼
XN
j¼1

qje
�ai jxi�sjj2 ð22Þ
were studied. These are referred to as the Gauss transforms with source and target dependent scales, respec-

tively. Our method for treating the Gauss transforms with complex parameters can be directly applied for

computing (22), but, unfortunately, not for (21). The evaluation of target dependent sums
T ðxiÞ ¼
XN
j¼1

qje
�ai jxi�sjj2 ; ð23Þ
where ai = ai�ibi, requires only replacing necessary parameters in (15). If the parameter aj is source depend-
ent, then such simple generalization is not available.
4. Numerical experiments

We present numerical experiments to demonstrate the performance of our algorithms. The code written

in C was tested on a Pentium 4 PC running LINUX. We used FFT from the FFTW package, and the code

was compiled using gcc with the -O3 option. The sources and targets were randomly placed (with the uni-

form distribution) in ½� 1
2
; 1
2
� and the coefficients qj were uniformly distributed in the complex box

½� 1
2
; 1
2
� � ½� 1

2
; 1
2
�. The evaluation times and the errors are shown in Table 1 for both the direct and the fast

methods.

The calculations were performed in double precision and with the parameter k = 0.14, and the oversam-

pling factor m = 2. The error was computed in ‘1 norm.

The results displayed in Table 1 clearly demonstrate OðN logNÞ complexity of the new algorithm. For

speed comparison, we provide timings of two versions of the direct algorithm; one with the straightforward

explicit evaluation of the Gaussians, and another, with precalculated matrix, where the direct algorithm
1

of the fast Gauss transform for a = 138 and b = 100

Error ‘1 Timings in seconds

Fast GT FFT Direct Alg. Matrix–vect. mult.

2.4e � 12 3.9e � 04 9.4e � 06 4.9e � 03 4.2e � 05

7.2e � 13 7.6e � 04 2.3e � 05 1.8e � 02 1.8e � 04

5.8e � 13 1.5e � 03 4.8e � 05 6.8e � 02 1.0e � 03

8.6e � 12 2.9e � 03 1.0e � 04 2.6e � 01 3.1e � 03

1.4e � 12 6.0e � 03 2.2e � 04 1.2e + 00 1.3e � 02

6.5e � 12 1.5e � 02 1.0e � 03 4.1e + 00 5.0e � 02

2.6e � 12 2.7e � 02 2.9e � 03 1.7e + 01 1.9e � 01

6.6e � 12 6.9e � 02 1.1e � 02 6.7e + 01 3.8e + 00

6.9e � 12 1.4e � 01 2.8e � 02 2.6e + 02 *
5.4e � 12 2.8e � 01 6.1e � 02 1.1e + 03 *

e is not displayed in (*) as it was strongly affected by the limited size of RAM.



280 F. Andersson, G. Beylkin / Journal of Computational Physics 203 (2005) 274–286
amounts to the matrix–vector multiplication. We also provide timings of the FFT algorithm for

comparison.

We see that the fast algorithm is faster than the explicit direct method even for the low number of sources

and targets. The break-even point between the fast algorithm and the matrix–vector multiplication is at

about N = 512. Measured in units of FFTs, the cost of the new algorithm varies from about 30 FFTs
for N = 128 to about six FFTs for N = 8192.

For the calculations in Table 1 the scaling and subdivision routines described in Section 3, are not em-

ployed. However, each partition obtained by the subdivision scheme can be dealt with by calculations such

as displayed in Table 1, with a < 138. Therefore, Table 1 displays upper bounds on the necessary compu-

tation time needed to treat each partition obtained from the subdivision scheme.
5. Conclusions

We have presented a fast algorithm for the calculation of sums of the type (1) in OðN logðNÞ þMÞ time.

As a generalization of previous methods for evaluating the discrete Gauss transforms, our method is de-

signed for the Gauss transforms with complex parameters. Our method is based on a version of the USFFT

with the Gaussian interpolating functions. Our method can also handle the generalized Gauss transforms of

the form (22), where the parameters are target dependent.
Appendix A. Gaussian based unequally spaced FFT

A.1. Preliminary considerations

The unequally spaced FFT (USFFT) algorithms are designed for the fast evaluation of trigonometric

sums
XN
l¼1

fle�2pixln; j n j6 N
2
; ðA:1Þ
given points xl and coefficients fl. One of the approaches uses interpolation techniques by convolving with a

‘‘bell’’ having a relatively small effective support. In [9] and [10] the Gaussians and the B-splines were used

as such ‘‘bells’’. The B-splines perform slightly better than the Gaussian bells since, for a given precision,

they have a slightly smaller effective support.

However, using the Gaussian bells is a natural choice for the purposes of this paper, since integrals con-

taining only Gaussians are evaluated analytically. We note that the error estimates presented in [9] are

rather pessimistic and develop more accurate estimates.
Let us denote the Gaussian bell parameterized by k > 0 as
ckðxÞ ¼ e�kx2 ; ðA:2Þ

with the Fourier transform
ĉkðnÞ ¼
Z 1

�1
e�2pixnckðxÞdx ¼

ffiffiffi
p
k

r
e�

ðpnÞ2
k : ðA:3Þ
Starting from this, we want to construct an interpolating function (something reminiscent of the sinc-

function used for ideal interpolation). The interpolation is then achieved by convolving data with the inter-

polating function. Generally, in order to obtain high accuracy, it is necessary for the interpolating function
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to have a rather large effective support. The key idea here is to split such an interpolating function into two

parts, one with a relatively small support, applied directly as a convolution, and one complementary part,

applied multiplicatively in the Fourier domain.

More specifically, let
akðnÞ ¼
X
l2Z

j ĉkðnþ lÞj2; ðA:4Þ
and define the interpolating function u (in the Fourier domain) by
ûðnÞ ¼ ĉkðnÞffiffiffiffiffiffiffiffiffiffiffi
akðnÞ

p : ðA:5Þ
As is shown below, this function fulfills the desired interpolating properties.

Lemma 1. The interpolating function ûðnÞ defined in (A.5) is a real and even function. Moreover, it is strictly

decreasing for n > 0, and ûðnÞ 6 1.

Proof. From its definition it is clear that û is real and even. For the monotonicity property, the

straightforward calculation gives
d

dn
ûðnÞ ¼

2p2e�
p2n2

k
P
k2Z

ke�
2p2ðnþkÞ2

k

P
k2Z

e�
2p2ðnþkÞ2

k

� �3
2

: ðA:6Þ
The sign of the right-hand side of (A.6) depends only on the sign of
X
k2Z

ke�
2p2ðnþkÞ2

k :
Since the center of the Gaussian is shifted left for n > 0, this sign is negative, and hence ûðnÞ is strictly

decreasing for n > 0. The bound then follows immediately from the fact that ûð0Þ ¼ 1. h

Let us turn our attention back to sums of the form (A.1). In the discussion below, we assume that

� 1
2
6 xl 6 1

2
; l ¼ 1; . . . ;N , and that the coefficients are zero in a narrow neighborhood of the boundary

of ½� 1
2
; 1
2
�. This assumption is made for simplicity and may be avoided by using periodically extended func-

tions, cf. [10].
Let us write
f ðxÞ ¼
XN
l¼1

f1dðx� xlÞ; ðA:7Þ
so that the sum in (A.1) is the Fourier transform of f,
f̂ ðnÞ ¼
XN
l¼1

f1e�2pixln: ðA:8Þ
We define the projection operator Pm
k by the convolution
Pm
kf ¼

Z 1

�1
f ðxÞckðmNx � kÞdx: ðA:9Þ
The parameter m, with the typical value m = 2, is an oversampling factor.
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Application of Parseval�s formula to (A.9) gives
Pm
kf ¼

Z 1

�1
e2piknf̂ ðmNnÞĉkðnÞdn; ðA:10Þ
which, in turn, is written as
Pm
kf ¼

Z 1
2

�1
2

e2pikn
X
l2Z

f̂ ðmNðnþ lÞÞĉkðnþ lÞdn: ðA:11Þ
We split the integral over R in (A.10) into a sum over intervals in (A.11), so that for a proper choice of k,
and jnj sufficiently small, ĉkðnÞ can be kept below desired computational precision, whenever l 6¼ 0, thereby

allowing us to neglect those terms.

Specifically, since the integral of (A.11) represents the coefficients of the Fourier series, it follows that for
F ðnÞ ¼
X
k2Z

Pm
kf

� �
e�2pikn; ðA:12Þ
it holds that
F ðnÞ ¼
X
l2Z

f̂ ðmNðnþ lÞÞĉkðnþ lÞ: ðA:13Þ
Dividing both sides of (A.13) by
ffiffiffiffiffiffiffiffiffiffiffi
akðnÞ

p
then gives
F ðnÞffiffiffiffiffiffiffiffiffiffiffi
akðnÞ

p ¼
X
l2Z

f̂ ðmNðnþ lÞÞûðnþ lÞ;
since ak(n) is periodic with the period 1. From Lemma 1 it follows that
supjnj6aûðnþ lÞ ¼ ûðj l j �aÞ;
and that
supjnj6a1� ûðnÞ ¼ 1� ûðaÞ;
Hence, by introducing
Cf̂ ðl; aÞ ¼ supjnj<a j f̂ ðmNðnþ lÞÞ j;
we estimate
F ðnÞffiffiffiffiffiffiffiffiffiffiffi
akðnÞ

p � f̂ ðmNðnÞÞ
�����

����� 6 ð1� ûðaÞÞCf̂ ð0; aÞ þ
X

l2Znf0g
Cf̂ ðl; aÞûðj l j �aÞ
for jnj < a. We summarize this result as

Theorem 1. Let E1 be the error in approximating the Fourier transform of the compactly supported function f

by
F ðnÞffiffiffiffiffiffiffiffi
akðnÞ

p , with F as defined in (A.12) and a by (A.4), i.e.
E1 ¼
supjnj<a j F ðnÞffiffiffiffiffiffiffi

akðnÞ
p � f̂ ðmNnÞ j

supjnj<a j f̂ ðmNnÞ j
:
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Then
E1 6 1� ûðaÞ þ 1

Cf̂ ð0; aÞ
X

l2Znf0g
Cf̂ ðl; aÞûðj l j �aÞ:
Due to rapid decay of û away from the origin, the dominant part in the error estimate is 1� ûðaÞ and the
terms corresponding to l = ±1.

Since we are interested in calculating f̂ ðnÞ for j n j6 N
2
, the parameter a above should be chosen as a ¼ 1

2m.

For the oversampling factor m = 2, and j n j< 1
4
, ûðnÞ is equal to one within the double precision and like-

wise, ûðn� 1Þ are zero within the double precision, provided k < 0.14. For k = 0.14 the numerical support

of ck is contained in [�16, 16]. Hence, each projection (A.9) takes on average addition of 33 terms, which

should be compared to 23 if the B-splines are used, cf. [10].

Remark 1. For oversampling factors m P 2, the accurate evaluation of ak(n) is only needed for j n j6 1
4
. In

this interval the calculation of ak simplifies significantly. The fraction
ckðnÞ
ckðnþ 1Þ
for j n j< 1
2m reaches its maxima at j n j¼ 1

2m. For k = 0.14 (double precision) and m = 2, its size is 5 · 10�16

and, thus, all the terms with l 6¼ 0 in (A.4) can be neglected. Therefore, for practical calculations we use
ffiffiffiffiffiffiffiffiffiffiffi
akðnÞ

p
�

ffiffiffi
p
k

r
e�

p2n2

k :
A.2. Algorithms

We consider three cases for the evaluation of
f̂ ðnjÞ ¼
XN
l¼1

fle�2pixlnj ; ðA:14Þ
namely,

(1) Equally spaced nj and unequally spaced xl.
(2) Unequally space nj and equally spaced xl.

(3) Both nj and xl are unequally spaced.

A.2.1. Unequally spaced FFT

The first case is treated by the scheme outlined above, since the sum (A.12) can be computed by the FFT.

If the coefficients fl are zero for points xl within a (narrow) neighborhood of the boundary of ½� 1
2
; 1
2
�, i.e.,

the interaction region of ck(mNx), it follows that P
m
k is close to zero for j k jP mN

2
. Hence, the infinite sum

(A.12) can be replaced by a sum with terms indexed by j k j< mN
2
.

Assuming nj ¼ j
N � m

2
; j ¼ 0; . . . ; mN � 1, the evaluation of f̂ ðnjÞ for j ¼ 0; . . . ;N � 1 uses

Algorithm 1.

(1) Compute
Pm
kf ¼

XN
l¼1

flckðmNxl � kÞ: ðA:15Þ
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(2) Compute the sum
F ðnjÞ ¼
XmN2 �1

k¼�mN
2

Pm
kf e

�2piknj ðA:16Þ
by FFT.

(3) Divide F(nj) by
ffiffiffiffiffiffiffiffiffiffiffiffi
akðnjÞ

p
.

A.2.2. Fast evaluation of the Fourier series at unequally spaced points

We use a duality argument to construct an algorithm for the case where the function samples are known

at uniformly distributed points, and the evaluation is sought at unequally spaced points.

Let us define operator T as
Tf ðnÞ ¼ F ðn=mÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
akðn=mÞ

p ;
with F(n) defined by (A.12) and ak(n) by (A.4). Consider now the problem of evaluating sums
ĝðnÞ ¼
XN2�1

l¼�N
2

gle
�2pinl

N ;
at unequally spaced points j nj j6 N
2
. Let us consider f 2 C1

0 with supp ðf̂ Þ � ð� N
2
; N
2
Þ and jjfjj1 = 1, and
gðxÞ ¼
XN2�1

l¼�N
2

gld x� 1

N

� �
:

Since g is supported in ½� 1
2
; 1
2
�, it follows from Theorem 1 and the conditions on f, that for j x j6 1

2

jhgðxÞ; f̂ ðNxÞ � Tf ðxÞij 6 �
XN2�1

l¼�N
2

jglj;
where ÆÆ,Ææ denotes the usual inner product in L2ðRÞ. Now, since
hgðxÞ; f̂ ðNxÞi ¼ hĝðNnÞ; f ðnÞi; ðA:17Þ

an approximation of ĝ(n) can be obtained by applying the adjoint operator T* to g(x). We write
hg; Tf i ¼
Z 1

�1

XN2�1

l¼�N
2

glffiffiffiffiffiffiffiffiffiffiffi
ak n

m

� �q d n� l
N

� �
�F

n
m

� �
dn; ðA:18Þ
and define the operator ~P
m
f on test functions f as
~P
m
f ðxÞ ¼

X
k2Z

Z 1

�1
f ð~xÞckðmN~x� xÞd~xdðx� kÞ: ðA:19Þ
The Fourier transform of (A.19) is then equal to F(n) in (A.12) and, hence, the Parseval�s identity applied to

(A.18) gives
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hg; Tf i ¼
Z 1

�1
Ĝ

n
m

� �
~P

m
f ðnÞdn; ðA:20Þ
where
ĜðnÞ ¼
XN2�1

l¼�N
2

glffiffiffiffiffiffiffiffiffiffiffiffiffi
ak 1

mN

� �q e�
2piln
N : ðA:21Þ
Inserting (A.19) into (A.20) finally yields
hg; Tf i ¼
Z 1

�1

X
k2Z

Ĝ
k
m

� �
ck mN~x� kð Þ�f ð~xÞd~x ¼ hĝappðNnÞ; f i; ðA:22Þ
where
ĝappðnÞ ¼
X
k2Z

Ĝ
k
m

� �
ckðmn� kÞ: ðA:23Þ
Note that values of Ĝ are needed at points k
m. To obtain this (oversampled) data, let
~gl ¼
glffiffiffiffiffiffiffiffiffiffi
ak l

mNð Þ
p ; � N

2
6 l 6 N

2
� 1;

0; otherwise:

(
ðA:24Þ
Applying FFT to the sequence f~glg
mN
2
�1

l¼�mN
2

gives the desired values fĜðkmÞgk.
We summarize these considerations for evaluation of the Fourier series at unequally spaced as

Algorithm 2.

(1) Calculate f~glg as defined by (A.24).

(2) Apply FFT to obtain ĜðkmÞ.
(3) Calculate ĝappðnÞ by the sum in (A.23).
A.2.3. Evaluation of unequally spaced FFT at unequally spaced points

We use a combination of the two previous methods for the fast evaluation of (A.14), where both the

spatial points x1 2 ½� 1
2
; 1
2
� and frequencies nj 2 ½� N

2
; N
2
� are unequally spaced. This combination is con-

structed by using an intermediate equally spaced samples:

Algorithm 3.

(1) Calculate
Pm
kf ¼

X
l

flck mN x1 �
k
mN

� �� �
; k ¼ � m2N

2
; . . . ;

m2N
2

� 1 ðA:25Þ
(by including only numerically significant terms in the sum) to obtain an equispaced representation on

½� m
2
; m
2
�.

(2) Divide by the orthogonalization factor
ffiffiffiffiffi
ak

p
,

gk ¼
Pm

kfffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ak k

m2N

� �q
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(3) Apply FFT for the evaluation of
ĝn ¼
Xm2N2

k¼�m2N
2

gke
�2pikn

m2N ; n ¼ � m2N
2

; . . . ;
m2N
2

� 1 ðA:26Þ
(4) Evaluate the sums (including only numerically significant terms)
ĥðnjÞ ¼
X
n

ĝnckðmnj � nÞ: ðA:27Þ
(5) Divide by the orthogonalization factor
ffiffiffiffiffi
ak

p
to obtain
f̂ appðnjÞ ¼
ĥðnjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ak

nj
mN

	 
r ðA:28Þ
as an approximation of f̂(n).
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